3.148 \(\int \frac{A+B \cos (c+d x)}{\sqrt{\cos (c+d x)} (a+a \cos (c+d x))} \, dx\)

Optimal. Leaf size=83 \[ \frac{(A+B) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}+\frac{(A-B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}-\frac{(A-B) \sin (c+d x) \sqrt{\cos (c+d x)}}{d (a \cos (c+d x)+a)} \]

[Out]

((A - B)*EllipticE[(c + d*x)/2, 2])/(a*d) + ((A + B)*EllipticF[(c + d*x)/2, 2])/(a*d) - ((A - B)*Sqrt[Cos[c +
d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.150444, antiderivative size = 83, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.121, Rules used = {2978, 2748, 2641, 2639} \[ \frac{(A+B) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}+\frac{(A-B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}-\frac{(A-B) \sin (c+d x) \sqrt{\cos (c+d x)}}{d (a \cos (c+d x)+a)} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x])/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])),x]

[Out]

((A - B)*EllipticE[(c + d*x)/2, 2])/(a*d) + ((A + B)*EllipticF[(c + d*x)/2, 2])/(a*d) - ((A - B)*Sqrt[Cos[c +
d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]))

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{A+B \cos (c+d x)}{\sqrt{\cos (c+d x)} (a+a \cos (c+d x))} \, dx &=-\frac{(A-B) \sqrt{\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))}+\frac{\int \frac{\frac{1}{2} a (A+B)+\frac{1}{2} a (A-B) \cos (c+d x)}{\sqrt{\cos (c+d x)}} \, dx}{a^2}\\ &=-\frac{(A-B) \sqrt{\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))}+\frac{(A-B) \int \sqrt{\cos (c+d x)} \, dx}{2 a}+\frac{(A+B) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{2 a}\\ &=\frac{(A-B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}+\frac{(A+B) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}-\frac{(A-B) \sqrt{\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))}\\ \end{align*}

Mathematica [C]  time = 6.42271, size = 1094, normalized size = 13.18 \[ \text{result too large to display} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x])/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])),x]

[Out]

((I/4)*A*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Sec[c/2]*((2*E^((2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, -(E^((2*I)*
d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)
]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos[c] - 3*d*(-1 +
 E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2
*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] +
I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x))*Sin[c])))/(a + a*Cos[c
+ d*x]) - ((I/4)*B*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Sec[c/2]*((2*E^((2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, -
(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])
/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos[c] -
 3*d*(-1 + E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2
)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*C
os[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x))*Sin[c])))/(a
+ a*Cos[c + d*x]) + (Cos[c/2 + (d*x)/2]^2*Sqrt[Cos[c + d*x]]*((-2*(A - B)*Csc[c])/d - (2*Sec[c/2]*Sec[c/2 + (d
*x)/2]*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2]))/d))/(a + a*Cos[c + d*x]) - (A*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Hypergeo
metricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x
- ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[
c]]]])/(d*(a + a*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]) - (B*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*HypergeometricPFQ[{1/4,
1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]
]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(a + a
*Cos[c + d*x])*Sqrt[1 + Cot[c]^2])

________________________________________________________________________________________

Maple [A]  time = 3.329, size = 243, normalized size = 2.9 \begin{align*}{\frac{1}{da}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( -\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( A{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) -A{\it EllipticE} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) +B{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) +B{\it EllipticE} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) \right ) + \left ( 2\,A-2\,B \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}+ \left ( -A+B \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))/(a+cos(d*x+c)*a)/cos(d*x+c)^(1/2),x)

[Out]

((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+
B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+(2*A-2*B)*sin(1/2*d*x+1/2*c)^
4+(-A+B)*sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1
/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt{\cos \left (d x + c\right )}}{a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(a*cos(d*x + c)^2 + a*cos(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/cos(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)*sqrt(cos(d*x + c))), x)